Combinatorics

Warm-up activity

k – permutation (variation without repetitions), variation with repetitions, n – factorial, multiplication rule, permutation

An arrangement of members of a set in a sequence or linear order, or the act or process of changing the linear order of an ordered set.
The product of all positive integers less than or equal to n .
The ordered arrangement of k different elements selected from a set of n -elements. When k is equa to n , than they are defined as permutation.
The ordered arrangements of k elements (could be the same) selected from a set of n -elements.
Suppose an event E can occur in m different ways and associated with each way of occurring of E another event F can occur in n different ways, then the total number of simultaneous occurrences of the two events in the given order is $m \cdot n$.

 $\label{lem:https://madasmaths.com/archive/mathsbooklets/further_topics/various/combinatorics.pdf \\ https://probability.oer.math.uconn.edu/wp-content/uploads/sites/2187/2018/01/prob3160ch1.pdf$

1. Suppose we have 4 shirts of 4 different colors and 3 pants of different colors. How many different outfits are there?

Ans. 12

2. What is the number of possible batting orders (in baseball) with 9 players?

Ans. 362880

3. How many ways can one arrange 4 math books, 3 chemistry books, 2 physics books, and 1 biology book on a bookshelf so that all the math books are together, all the chemistry books are together, and all the physics books are together?

Ans. 6912

4. A college planning committee consists of 3 freshmen, 4 sophomores, 5 juniors, and 2 seniors. A subcommittee of 4 consists of 1 person from each class. How many choices are possible?

Ans. 120

5. Recall that for 6-place license plates, with the first three places occupied by letters and the last three by numbers, we have $26 \cdot 26 \cdot 26 \cdot 10 \cdot 10 \cdot 10$ choices. What if no repetition is allowed?

Ans. 11232000

- 6. A password can be made up of any 4 digit combination.
 - (a) How many different passwords are possible?
 - (b) How many are possible if all the digits are odd?
 - (c) How many can be made in which all digits are different **or** all digits are the same?

Ans. (a) 10000, (b) 625, (c) 5050

- 7. A group of 7 pupils consists of 3 girls and 4 boys. The names of two of the boys are Argi and Bargi. All seven students sit in a random order on a bench. Determine the number of sitting arrangements in which . . .
 - (a) Argi and Bargi sit next to each other.
 - (b) Argi and Bargi do not sit next to each other.
 - (c) the three girls and the four boys sit next to each other.

Ans. a) 1440, b) 3600, c) 288

- 8. The nine single digit numbers from 1 to 9 are written on nine separate pieces of card. Four of these cards are picked randomly and placed next to each other to form a four digit number. Find the total different number of arrangements of ...
 - (a) four digit numbers that can be formed.
 - (b) four digit odd numbers that can be formed.
 - (c) four digit numbers that can be formed, whose all four digits are odd.
 - (d) four digit numbers that can be formed which have odd and even digits.
 - (e) four digit numbers that can be formed which have at least three odd digits.
 - (f) four digit numbers that can be formed whose sum of digits is 28.

Ans. a) 3024, b) 1680, c) 120, d) 2880, e) 1080, f) 48