
3. Functions

Illustration for tasks 3.1. – 3.4.

The illustration shows the graph of a function f.

Task 3.1. (T 1.2015)

The range of the function f belongs to the following interval:

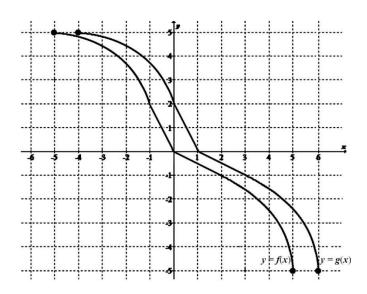
- A. $\langle -1; 2 \rangle$ B. $\langle 0; 5 \rangle$ C. $\langle -5; 5 \rangle$ D. $\langle -5; 0 \rangle$

Task 3.2. (T 2.2015)

The zero of the function f is

- **A.** x = -5 **B.** x = 0 **C.** x = 2 **D.** x = 5

Task 3.3. (T 3.2015)


The set of solutions of inequality $f(x) \le -1$ is the following interval:

- **A.** (2; 5)
- **B.** $\langle -5; 2 \rangle$ **C.** $\langle -5; 1 \rangle$ **D.** $\langle -1; 5 \rangle$

Task 3.4. (T 4.2015)

The graph of the function f is symmetrical about

- **A.** the OX axis
- **B.** the OY axis
- **C.** the origin
- **D.** the line y = x

Task 3.5. (T 5.2015)

The function g was plotted by translating the graph of the function f along one of the axes of the coordinate system (see illustration). The function g can be expressed in the following way:

A.
$$g(x) = f(x) - 1$$
 B. $g(x) = f(x+1)$ **C.** $g(x) = f(x-1)$ **D.** $g(x) = f(x) + 1$

Task 3.6. (T 14.2015 0 – 3 pts)

Given the function f with the formula $f(x) = -x^2 - 2x + 3$, complete the following sentences.

- The function f reaches the maximum value of for x equal to
- The function *f* has negative values if, and only if, the *x* values belong to the set.......

Task 3.7. (T 5.2016)

The linear function y = (3 - m)x + 6 has no x-intercepts when

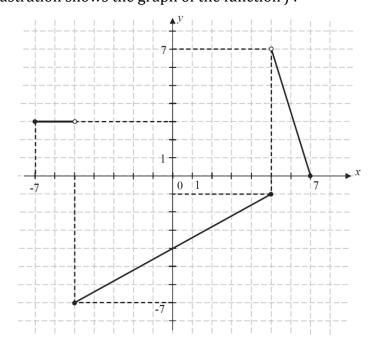
- **A.** m = 3

- **B.** m = 0 **C.** m = 6 **D.** m = -3

Task 3.8. (T 6.2016)

The quadratic function f takes negative values for all arguments in the (-2,3) interval and for no other arguments. The solution set for the inequality f(x-3) < 0 is the interval

- **A.** (-5; 0)
- **B.** (1;6) **C.** (-2,3) **D.** (-3;2)


Task 3.9. (T 18.2016, 0 – 2 pts)

The linear function f has the equation $f(x) = -\frac{1}{2}x + 13$. Complete the following sentences.

- b) The *x*-intercept of the function equals

Task 3.10. (T 20.2016, 0 – 5 pts)

The following illustration shows the graph of the function f.

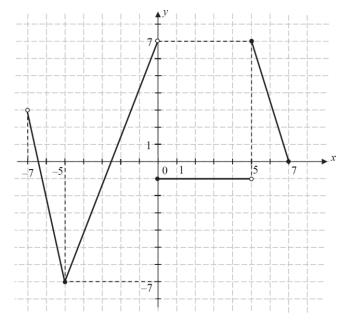
Complete the following sentences based on the illustration.

- a) The domain of the function is the set $D = \dots$
- b) The range of the function is $Z_w = \dots$
- c) The longest interval in which the function f decreases is
- d) The lowest value of the function *f* equals
- e) The solution set for the inequality f(x) < -1 is

Task 3.11. (T 6. 2017)

The graph of a linear function f is a line which crosses the axes of the coordinate system at K = (-5, 0) and L = (0, 7). Therefore, the equation of function f is:

A.
$$f(x) = -\frac{7}{5}x + 7$$
 B. $f(x) = \frac{7}{5}x + 7$ **C.** $f(x) = \frac{5}{7}x - 5$ **D.** $f(x) = -\frac{5}{7}x - 5$


B.
$$f(x) = \frac{7}{5}x + 7$$

C.
$$f(x) = \frac{5}{7}x - 5$$

D.
$$f(x) = -\frac{5}{7}x - 5$$

Task 3.12. (T 15.2017, 0 - 5 pts)

The illustration shows the graph of a function f.

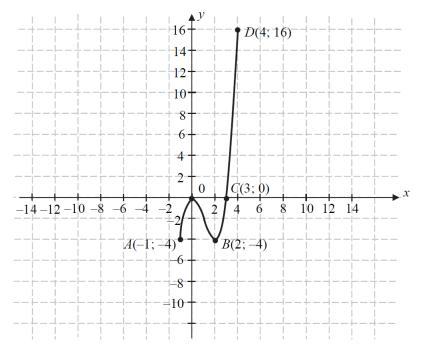
Complete the following sentences.

- a) The domain of function f is the set $D = \dots$
- b) The range of function f is $Z_w = \dots$
- c) The maximum of function *f* equals
- e) The number of *x*-intercepts of function *f* equals

Task 3.13 (T 5.2018)

The exponential function f is given by the equation $f(x) = 2^x$. The graph of a function g is obtained by translating the graph of function f three units upwards along the axis OY. Hence, function g is defined by the equation

A.
$$g(x) = 2^{x+3}$$


A.
$$g(x) = 2^{x+3}$$
 B. $g(x) = 2^x + 3$ **C.** $g(x) = 2^{x-3}$ **D.** $g(x) = 2^x - 3$

C.
$$q(x) = 2^{x-3}$$

D.
$$q(x) = 2^x - 3$$

Information for tasks 3.14 – 3.17.

The illustration shows the graph of a function f. It has two zeros which are both integers.

Task 3.14. (T 6.2018)

The domain of the function is the set:

A.
$$(-1; 16)$$

B.
$$\langle -4; 16 \rangle$$
 C. $\langle -1; 4 \rangle$

C.
$$(-1:4)$$

D.
$$(-1; 3)$$

Task 3.15. (T 7.2018)

The range of the function *f* is the set:

B.
$$\langle -1:3 \rangle$$

A.
$$\langle -1; 4 \rangle$$
 B. $\langle -1; 3 \rangle$ **C.** $\langle 0; 16 \rangle$ **D.** $\langle -4; 16 \rangle$

Task 3.16. (T 8.2018)

Function f reaches its minimum for:

A.
$$x = 0 \text{ and } x = 3$$

B.
$$x = -1$$
 and $x = 2$

C.
$$x = -1 \text{ and } x = -4$$

D.
$$x = 2 \text{ and } x = 4$$

Task 3.17. (T 9.2018)

The zeros of the function f are the numbers

$$B_{i}$$
 -1 and 2

B.
$$-1$$
 and 2 **C.** -1 and -4 **D.** 2 and -4

$$\mathbf{D}$$
. 2 and -4

Task 3.18. (T 16.2018, 0 – 3 pts)

A quadratic function f is given by the equation: $f(x) = 2x^2 - 8x - 10$. Complete the following sentences.

- a) The interval in which the function is decreasing is
- b) The range of the function is the interval:
- c) The function assumes non-negative values if and only if the x arguments belong to the set

Task 3.19 (T 4.2019)

The quadratic function f takes positive values for all xs within the interval (-8,16) and for no other xs. The solution set for the inequality f(x + 4) > 0 is the interval:

B.
$$(-4;20)$$

C.
$$(-4; 12)$$

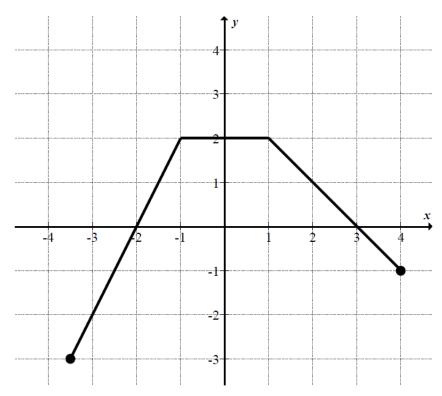
Task 3.20 (T 5.2019)

The four functions: f1, f2, f3, f4 are defined for all real numbers by the following formulas:

$$f_1(x) = x^2 - x + 2019,$$
 $f_2(x) = (x^2 + 2019)(x^2 + 1),$
 $f_3(x) = -(x - 2019)(x^2 + 1),$ $f_4(x) = -x^2 + 11x - 2019$

One of these functions has a zero. This function is:

A. f_1


 $\mathbf{B.} \ f_2$

C. f_3

D. f_4

Task 3.21 (T 4.2022)

The graph below shows function f.

Therefore,

A. f(1) - 2 = f(0) **B.** f(0) - 2 = f(2)

C. f(1) - 2 = f(2) D. f(1) - 2 = f(-1)

Task 3.22 (T 10.2020)

The function f is given by the formula $f(x) = \left(\frac{9}{4}\right)^x$ for each real number x.

For $x = -\frac{3}{2}$ the function f assumes the value of:

A. $\frac{27}{8}$

B. $\frac{4}{9}$

D. $\frac{9}{4}$

Task 3.23 (T 18.2020)

The quadratic function f is given by the formula f(x) = -2(x+1)(x-3). Complete the following sentences.

- a) The axis of symmetry of the graph of the function *f* is a line given by the equation
- b) The least value of the function f in the interval $\langle -1, 2 \rangle$ equals
- c) The area of a triangle whose vertices are the points of intersection of the graph of the function f with the axes of the coordinate system equal

Task 3.24 (T 5.2021)

The graph of the function f(x) = (x + 6)(2x - 4) is a parabola whose vertex is a point with coordinates

- **A.** (-6,4)

- **B.** (6,-4) **C.** (-6,2) **D.** (-2,-32)

Information for tasks 3.25 – 3.26

A function *f* assigns to each two-digit number *x* the remainder of the division of *x* by 7.

Task 3.25 (T 6.2021)

The set of values of the function *f* consists of

- **A.** 10 elements
- **B.** 90 elements
- C. 7 elements
- **D.** 13 elements

Task 3.26 (T 7.2021)

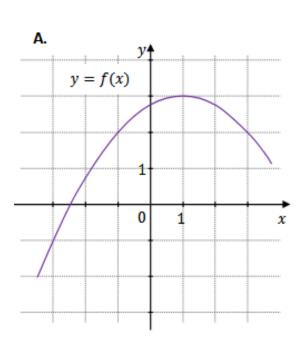
The number of zeros of the function f is equal to

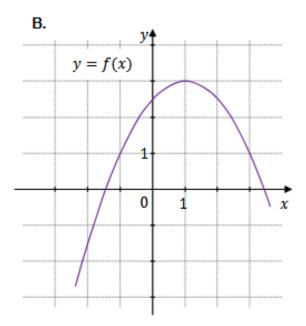
- **A.** 10 elements
- **B.** 90 elements
- **C.** 7 elements
- **D.** 13 elements

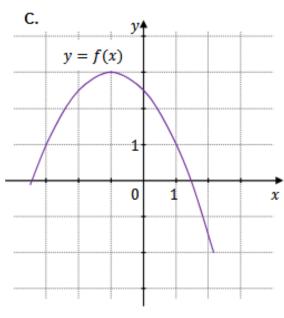
Task 3.27 (T 8.2021)

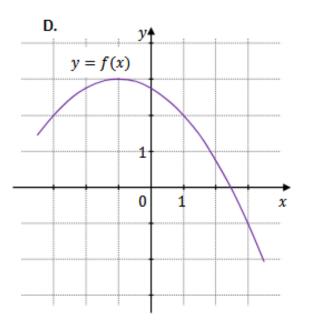
The number of positive integers which belong to the set of values of the function $g(x) = -x^2 - 4x + 21$ is

- **A.** 10
- **B.** 3
- **C.** 25
- **D.** 2

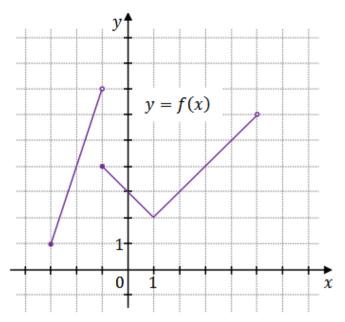

Task 3.28 (T 4 - 4.1.2023)


A quadratic function f is given by the formula $f(x) = -\frac{1}{2}(x-1)^2 + 3$


One of the figures (A-D) below shows a part of the graph of the function f in the Cartesian coordinate system (x, y).


Complete the sentence. Select the correct answer from the options given below.

The part of the graph of the function f is shown in figure.


Task 3.29 (T 4 - 4.2.2023)

Complete the sentence so that it is true.

The zeroes of the function f are the numbers and and

Task 3.30 (T 5 - 5.1.2023)

The figure shows the graph of a function f in the Cartesian coordinate system (x, y).

Complete the sentence. Select the correct answer from the options given below.

The set of all solutions of the inequality f(x) < 4 is

B.
$$[-3, 3)$$

C.
$$[-3, -2) \cup (-1, 3)$$
 D. $(-2, -1) \cup (3, 5)$

D.
$$(-2, -1) \cup (3, 5)$$

Task 3.31 (T.5 – 5.2.2023)

Complete the following sentences so that they are true.

Task 3.32 (T.11.2023)

A linear function *g* is given by the formula g(x) = -2x + 6. The graph of a linear function f passes through the point P = (2, 3) and is perpendicular to the graph of the function *g*.

Complete the sentence. Select the correct answer from the options given below.

The formula of the function *f* is

A.
$$f(x) = -2x + 3$$
 B. $f(x) = -2x + 7$ **C.** $f(x) = \frac{1}{2}x + 3$ **D.** $f(x) = \frac{1}{2}x + 2$

Task 3.33(T 3.2024)

A polynomial *W* is given by the formula $W(x) = x^6 - x^4 + 3x^2 - 3$.

Complete the sentence. Choose the correct answer from the options given below.

One of the zeroes of this function is the number

B.
$$-\frac{1}{3}$$

D.
$$\frac{1}{3}$$

Task 3.34 (T 4 - 4.1.2024)

A quadratic function f is given by the formula $f(x) = -x^2 + 14x - 13$.

Decide if the following statements are true or false. Select 'T' if the statement is true, or 'F' if it is false.

The range of the function f is the interval $(-\infty, 36]$.	Т	F
The function f has no zeroes.	Т	F

Task. 3.35 (T 4 - 4.2.2024)

Complete the sentences. Select the correct answer from options A–D and E–H.

1. The formula of the function f in vertex form is

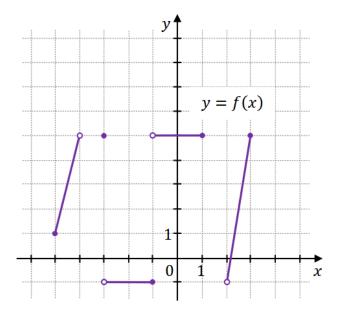
A.
$$f(x) = (x-7)^2 + 36$$

A.
$$f(x) = (x-7)^2 + 36$$
 B. $f(x) = -(x+7)^2 - 36$

C.
$$f(x) = -(x-7)^2 + 36$$
 D. $f(x) = (x+7)^2 - 36$

2. The formula of the function f in factored form is

E.
$$f(x) = (x - 13)(x - 1)$$


E.
$$f(x) = (x - 13)(x - 1)$$
 F. $f(x) = (x + 1)(x + 13)$

G.
$$f(x) = -(x+13)(x+1)$$
 H. $f(x) = -(x-1)(x-13)$

H.
$$f(x) = -(x-1)(x-13)$$

Task 3.36 (T 5 - 5.1.2024)

The figure shows the graph of a function f in the Cartesian coordinate system (x, y).

Complete the sentence. Choose the correct answer from the options given below.

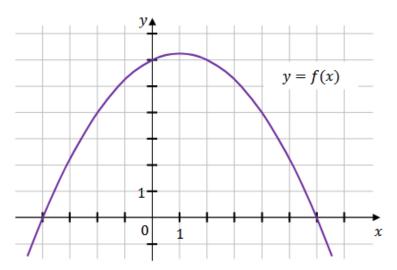
The function f has a value of 5 for

A. exactly one argument.

B. exactly two arguments.

C. exactly three arguments.

D. an infinite number of arguments.


Task 3.37 (T 5 - 5.2.2024)

Complete the sentence so that it is true. Write the correct numbers in the blanks.

The smallest value of the function <i>f</i> is	, and the largest value of this function is

Task 3.38 (T 6.2025)

The figure shows a part of the graph of a quadratic function f in the Cartesian coordinate system (x, y). The coordinates of each point at which the graph intersects the axes of the coordinate system are integers.

Task 3.38.1 (T 6.1 2025)

Let the line k be the axis of symmetry of the graph of the function f.

Complete the sentence so that it is true.

Task 3.38.2 (T 6.2 2025)

Complete the sentence. Choose the correct answer from the options given below.

The set of all arguments for which the function *f* takes values less than 6 is

$$\mathbf{A} \cdot (-\infty, -4) \cup (6, +\infty)$$

B.
$$(-\infty, 6)$$
.

$$C.(-\infty,0) \cup (2,+\infty)$$